JESEI
teacher’s notes student’s notes
Q 8. Chalocite has the highest proportion of copper atoms. Chalcopyrite has one copper atom in every four atoms (one quarter, or 25%, of the atoms are copper) whereas in chalcocite it is two copper atoms in every three atoms (two-thirds, or 67%, of the atoms are copper). Q 9. Chalcocite, because it contains the highest proportion of copper. No definite answer is possible because there is no information about the ease of extraction of copper from either of these minerals, nor about the purity of the ores. Q 10. See Table 1. Q 11. Lead: unreactive metal / shiny silver / prehistoric / from Anglo-Saxon / Group 4 Sulfur: reactive non-metal / yellow solid / prehistoric / from Latin / Group 6 Copper: unreactive metal / shiny red-brown / prehistoric / from Cyprus / transition metal Aluminium: reactive metal / shiny silver / 1826 / from Latin / Group 3 Iron: fairly unreactive metal / shiny silver / ~4000 BC / from Anglo-Saxon / transition metal Titanium: fairly reactive metal / shiny silver / 1795 / from Latin / transition metal
Minerals, elements and the Earth’s crust: teachers’ notes
Level This activity is suitable for students aged 11-14. Topic The activity uses questions about the composition of minerals and ores to reinforce work on elements, compounds, symbols and formulae. Description The activity includes two tables. One gives information about the most common elements in the Earth’s crust and the other the chemical composition of some minerals. Students answer questions based upon the information in these tables. This would be a useful exercise for homework or to be used in the case of teacher absence. Context Students need to be familiar with chemical elements, symbols, compounds and formulae. Teaching points Reference books and / or internet access should be available to help students tackle the research questions. Alternatively, teachers may wish to make the questions that refer to Table 2 easier, and less dependent on reference sources, by filling in some more of the cells in the table. Timing About half an hour. Resources Each student will need a copy of the Periodic Table. The activity Students tackle a series of questions based on tables giving information about the most common elements in the Earth’s crust and about the chemical composition of some minerals. Answers to questions Q 1. Appropriate bar chart. Q 2. Oxygen. Q 3. Magnesium. Q 4. They are found combined because they are relatively reactive elements and combine with oxygen from the atmosphere and with other elements to form compounds. Q 5. A compound.
Q 6. Magnesium (because it is the rarest). No definite answer is possible because there is no information about the ease of extraction of any of the elements.
Q 7. See Table 1 Mineral name Chemical formula
How many atoms of each element are present in the formula
Useful element
Uses of this element
Galena PbS Lead x 1 Sulfur x1
Lead
Flashing (rainproof strips) on roofs, car batteries
Pyrite FeS 2 Iron x 1 Sulfur x 2
Sulfur (pyrite is not used as an ore of iron)
Making sulfuric acid
Chalcopyrite CuFeS 2
Copper x 1 Iron x 1 Sulfur x 2
Copper Plumbing pipes and electrical wires. Coinage
Chalcocite Cu 2 S
Copper x 2 Sulfur x 1
Copper Plumbing pipes and electrical wires. Coinage
Bauxite Al 2 O 3
Aluminium x 2 Oxygen x 3
Aluminium Making alloys for aircraft, packaging, electrical use
etc
Magnetite Fe 3 O 4
Iron x 3 Oxygen x 4
Iron Making steel for construction, transport, packaging
etc
Haematite Fe 2 O 3
Iron x 2 Oxygen x 3
Iron Making steel for construction, transport, packaging
etc
Rutile TiO 2
Titanium x 1 Oxygen x 2
Titanium Making alloys for aircraft parts
Table 1 Answers
JESEI
teacher’s notes student’s notes
Q 8. Chalocite has the highest proportion of copper atoms. Chalcopyrite has one copper atom in every four atoms (one quarter, or 25%, of the atoms are copper) whereas in chalcocite it is two copper atoms in every three atoms (two-thirds, or 67%, of the atoms are copper). Q 9. Chalcocite, because it contains the highest proportion of copper. No definite answer is possible because there is no information about the ease of extraction of copper from either of these minerals, nor about the purity of the ores. Q 10. See Table 1. Q 11. Lead: unreactive metal / shiny silver / prehistoric / from Anglo-Saxon / Group 4 Sulfur: reactive non-metal / yellow solid / prehistoric / from Latin / Group 6 Copper: unreactive metal / shiny red-brown / prehistoric / from Cyprus / transition metal Aluminium: reactive metal / shiny silver / 1826 / from Latin / Group 3 Iron: fairly unreactive metal / shiny silver / ~4000 BC / from Anglo-Saxon / transition metal Titanium: fairly reactive metal / shiny silver / 1795 / from Latin / transition metal
Minerals, elements and the Earth’s crust: teachers’ notes
Level This activity is suitable for students aged 11-14. Topic The activity uses questions about the composition of minerals and ores to reinforce work on elements, compounds, symbols and formulae. Description The activity includes two tables. One gives information about the most common elements in the Earth’s crust and the other the chemical composition of some minerals. Students answer questions based upon the information in these tables. This would be a useful exercise for homework or to be used in the case of teacher absence. Context Students need to be familiar with chemical elements, symbols, compounds and formulae. Teaching points Reference books and / or internet access should be available to help students tackle the research questions. Alternatively, teachers may wish to make the questions that refer to Table 2 easier, and less dependent on reference sources, by filling in some more of the cells in the table. Timing About half an hour. Resources Each student will need a copy of the Periodic Table. The activity Students tackle a series of questions based on tables giving information about the most common elements in the Earth’s crust and about the chemical composition of some minerals. Answers to questions Q 1. Appropriate bar chart. Q 2. Oxygen. Q 3. Magnesium. Q 4. They are found combined because they are relatively reactive elements and combine with oxygen from the atmosphere and with other elements to form compounds. Q 5. A compound.
Q 6. Magnesium (because it is the rarest). No definite answer is possible because there is no information about the ease of extraction of any of the elements.
Q 7. See Table 1 Mineral name Chemica l formula
How many atoms of each element are present in the formula
Useful elemen t
Uses of this element
Galena PbS Lead x 1 Sulfur x1
Lead
Flashing (rainproof strips) on roofs, car batteries
Pyrite FeS 2 Iron x 1 Sulfur x 2
Sulfur (pyrite is not used as an ore of iron)
Making sulfuric acid
Chalcopyrite CuFeS 2
Copper x 1 Iron x 1 Sulfur x 2
Copper Plumbing pipes and electrical wires. Coinage
Chalcocite Cu 2 S
Copper x 2 Sulfur x 1
Copper Plumbing pipes and electrical wires. Coinage
Bauxite Al 2 O 3
Aluminium x 2 Oxygen x 3
Aluminium Making alloys for aircraft, packaging, electrical use
etc
Magnetite Fe 3 O 4
Iron x 3 Oxygen x 4
Iron Making steel for construction, transport, packaging
etc
Haematite Fe 2 O 3
Iron x 2 Oxygen x 3
Iron Making steel for construction, transport, packaging
etc
Rutile TiO 2
Titanium x 1 Oxygen x 2
Titanium Making alloys for aircraft parts
Table 1 Answers